Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Int J Biol Macromol ; 267(Pt 1): 131436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593897

RESUMEN

Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.


Asunto(s)
Atorvastatina , Interacciones Hidrofóbicas e Hidrofílicas , Lactatos , Nanopartículas , Polietilenglicoles , Atorvastatina/química , Polietilenglicoles/química , Nanopartículas/química , Portadores de Fármacos/química , Micelas , Poliésteres/química , Composición de Medicamentos , Simulación de Dinámica Molecular
2.
Chem Phys Lipids ; 260: 105377, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38325712

RESUMEN

Atorvastatin calcium (ATV) and proanthocyanidins (PAC) have a strong antioxidant activity, that can benefit to reduce the atherosclerotic plaque progression. Unfortunately, the bioavailability of ATV is greatly reduced due to its limited drug solubility while the PAC drug is unstable upon exposure to the atmospheric oxygen. Herein, the lyotropic liquid crystalline nanoparticles (LLCNPs) constructed by a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) at different weight ratios were used to encapsulate the hydrophobic ATV and hydrophilic PAC. The LLCNPs were further characterized by small-angle X-ray scattering and dynamic light scattering. Depending on the lipid composition, the systems have a size range of 140-190 nm and were able to encapsulate both drugs in the range of 90-100%. Upon increasing the citrem content of drug-loaded LLCNPs, the hexosomes (H2) was completely transformed to an emulsified inverse micellar (L2). The optimum encapsulation efficiency (EE) of ATV and PAC were obtained in citrem/SPC weight ratio 4:1 (L2) and 1:1 (H2), respectively. There was a substantial change in the mean size and PDI of the nanoparticles upon 30 days of storage with the ATV-loaded LLCNPs exhibiting greater colloidal instability than PAC-loaded LLCNPs. The biphasic released pattern (burst released at the initial stage followed by the sustained released at the later stage) was perceived in ATV formulation, while the burst drug released pattern was observed in PAC formulations that could be attributed by its internal H2 structure. Interestingly, the cytokine studies showed that the PAC-LLCNPs promisingly up regulate the expressions of tumor necrosis factor-alpha (TNF-α) better than the drug-free and ATV-loaded LLCNPs samples. The structural tunability of citrem/SPC nanoparticles and their effect on physicochemical characteristic, biological activities and potential as an alternative drug delivery platform in the treatment of atherosclerosis are discussed.


Asunto(s)
Cristales Líquidos , Nanopartículas , Proantocianidinas , Atorvastatina/química , Preparaciones Farmacéuticas , Nanopartículas/química , Cristales Líquidos/química
3.
Int J Pharm ; 650: 123720, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38110014

RESUMEN

Atorvastatin (ATV) is a first-line drug for the treatment of hyperlipidemia. This drug presents biopharmaceutical problems, partly due to its low solubility and dissolution rate. In this work, nanocrystals of ATV stabilized with Tween 80® were designed by wet milling. A full factorial design was applied to optimize the process. Additionally, a cryoprotectant agent (maltodextrin, MTX) was identified, which allowed maintaining the properties of the nanocrystals after lyophilization. The storage stability of the nanocrystals was demonstrated for six months in different conditions. The obtained nanocrystal powder was characterized using SEM, EDXS, TEM, DSC, TGA, FT-IR, and XRD, showing the presence of irregular crystals with semi-amorphous characteristics, likely due to the particle collision process. Based on the reduction in particle size and the decrease in drug crystallinity, a significant increase in water and phosphate buffer (pH 6.8) solubility by 4 and 6 times, respectively, was observed. On the other hand, a noticeable increase in the dissolution rate was observed, with 90 % of the drug dissolved within 60 min of study, compared to 30 % of the drug dissolved within 12 h in the case of the untreated drug or the physical mixture of components. Based on these results, it can be concluded that the nano-milling of Atorvastatin stabilized with Tween 80® is a promising strategy for developing new formulations with improved biopharmaceutical properties of this widely used drug.


Asunto(s)
Productos Biológicos , Nanopartículas , Polisorbatos , Atorvastatina/química , Espectroscopía Infrarroja por Transformada de Fourier , Solubilidad , Nanopartículas/química , Liofilización , Tamaño de la Partícula
4.
Free Radic Biol Med ; 209(Pt 2): 301-319, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37865306

RESUMEN

A novel circRNA named circSQSTM1 (hsa_circRNA_075320) was screened out in atorvastatin (ATV) stimulated endothelial cells (ECs) by our group. Considering the anti-atherosclerotic function of ATV, we hypothesized the circSQSTM1 could protect ECs functions in AS progression. The effects of circSQSTM1 on ECs inflammation, oxidative stress and autophagy were measured by qRT-PCR, Western blotting, monocyte-endothelial adhesion assay, dichloro-dihydro-fluorescein diacetate and mCherry-GFP-LC3 labeling. A luciferase reporter assay, RNA immunoprecipitation, MS2-tagging system and fluorescence in situ hybridization were performed to identify the biological functions of circSQSTM1. The partial left carotid artery ligation model and atherosclerosis model were established to analyze the effects of circSQSTM1 on atherosclerosis progression in vivo. Our results revealed that ATV induced the accumulation of circSQSTM1 in ECs via suppressing m6A modified degradation. In the cytoplasm, circSQSTM1 could relieve Sirt1 by competitively sponging miR-23b-3p. In the nucleus, circSQSTM1 directly interacts with eIF4A3 and promoting the efficient nuclear export of FOXO1 mRNA, which encodes FOXO1 transcription factor to directly activate Sirt1 promoter activity. Hence, circSQSTM1 reduced inflammation, inhibited oxidative stress and promoted autophagy by upregulating Sirt1 in ECs. Moreover, circSQSTM1 overexpression in ECs attenuated the progression of atherosclerosis in ApoE-/- mice. Taken together, the unique noncoding RNA known as circSQSTM1 took a protective role to the ECs in atherosclerosis.


Asunto(s)
Aterosclerosis , Células Endoteliales , Animales , Ratones , Aterosclerosis/genética , Hibridación Fluorescente in Situ , Inflamación/genética , ARN Circular/genética , Sirtuina 1 , Atorvastatina/química , Atorvastatina/metabolismo
5.
Appl Biochem Biotechnol ; 194(1): 479-503, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34611858

RESUMEN

In biological systems, carbon nanotubes can enhance the biological effects of drugs and reduce their side effects. Methamphetamine (METH) is a stimulant drug that induces cell death in various cell types, primarily neural cells. On the other hand, specific doses of atorvastatin (ATO) can stimulate cell growth and inhibit cell death in different cell lines. This study aimed to investigate the improvement effect of ATO@single-walled carbon nanotube (SWCNT) on METH-induced cell cytotoxicity in the U87 glioblastoma cell line. In this study, cells were cultured in 10 mM of METH during the cell treatment with 0-10 nM of ATO and ATO@SWCNT. The conjugated drugs to SWCNT as Van der Waals were detected using field emission scanning electron microscopy, Fourier transform-infrared spectroscopy, and other analyses. Then, the in vitro proliferating of ATO@SWCNT was explored against glioblastoma cells compared to pure ATO. This examine was performed using methyl thiazole tetrazolium approach, terminal deoxynucleotidyl transferase deoxy uridine-triphosphate nick end labeling assay, caspase-3 method, lactate dehydrogenase assay, and RH-123 assay with 10 mM METH. The results obtained from transmission electron microscopy analysis showed the average size of 50 nm for ATO@SWCNT. This study indicated that U87 cells, which were exposed to METH and suffered cell death, were severely reduced in the presence of ATO, especially ATO@SWCNT (for its anti-apoptotic effect), but they survived. This study suggests that ATO, which was primarily used to reduce blood lipids, can significantly reduce brain cell death. The findings of this study indicate that by using SWCNT, more drugs can reach the target cells. This method reduces the total amount of required medication and shows a more beneficial therapeutic effect.


Asunto(s)
Atorvastatina , Citotoxinas/toxicidad , Metanfetamina/toxicidad , Nanotubos de Carbono/química , Atorvastatina/química , Atorvastatina/farmacología , Línea Celular Tumoral , Humanos
6.
Acta Pharmacol Sin ; 43(1): 240-250, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33686244

RESUMEN

Cardiovascular safety assessment is vital for drug development, yet human cardiovascular cell models are lacking. In vitro mass-generated human pluripotent stem cell (hPSC)-derived cardiovascular cells are a suitable cell model for preclinical cardiovascular safety evaluations. In this study, we established a preclinical toxicology model using same-origin hPSC-differentiated cardiomyocytes (hPSC-CMs) and endothelial cells (hPSC-ECs). For validation of this cell model, alirocumab, a human antibody against proprotein convertase subtilisin kexin type 9 (PCSK9), was selected as an emerging safe lipid-lowering drug; atorvastatin, a common statin (the most effective type of lipid-lowering drug), was used as a drug with reported side effects at high concentrations, while doxorubicin was chosen as a positive cardiotoxic drug. The cytotoxicity of these drugs was assessed using CCK8, ATP, and lactate dehydrogenase release assays at 24, 48, and 72 h. The influences of these drugs on cardiomyocyte electrophysiology were detected using the patch-clamp technique, while their effects on endothelial function were determined by tube formation and Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake assays. We showed that alirocumab did not affect the cell viability or cardiomyocyte electrophysiology in agreement with the clinical results. Atorvastatin (5-50 µM) dose-dependently decreased cardiovascular cell viability over time, and at a high concentration (50 µM, ~100 times the normal peak serum concentration in clinic), it affected the action potentials of hPSC-CMs and damaged tube formation and Dil-Ac-LDL uptake of hPSC-ECs. The results demonstrate that the established same-origin hPSC-derived cardiovascular cell model can be used to evaluate lipid-lowering drug safety in cardiovascular cells and allow highly accurate preclinical assessment of potential drugs.


Asunto(s)
Anticolesterolemiantes/farmacología , Atorvastatina/farmacología , Células Endoteliales/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Anticolesterolemiantes/química , Atorvastatina/química , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
7.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681767

RESUMEN

Atorvastatin ester (Ate) is a structural trim of atorvastatin that can regulate hyperlipidemia. The purpose of this study was to evaluate the lipid-lowering effect of Ate. Male Sprague Dawley (SD) rats were fed a high-fat diet for seven months and used as a hyperlipidemia model. The lipid level and liver function of the hyperlipidemia rats were studied by the levels of TG, TC, LDL, HDL, ALT, and AST in serum after intragastric administration with different doses of Ate. HE staining was used to observe the pathological changes of the rat liver and gastrocnemius muscle. The lipid deposits in the liver of rats were observed by staining with ORO. The genes in the rat liver were sequenced by RNA-sequencing. The results of the RNA-sequencing were further examined by qRT-PCR and western blotting. Biochemical test results indicated that Ate could obviously improve the metabolic disorder and reduce both the ALT and AST levels in serum of the hyperlipidemia rats. Pathological results showed that Ate could improve HFD-induced lipid deposition and had no muscle toxicity. The RNA-sequencing results suggested that Ate affected liver lipid metabolism and cholesterol, metabolism in the hyperlipidemia-model rats may vary via the PPAR-signaling pathway. The western blotting and qRT-PCR results demonstrated the Ate-regulated lipid metabolism in the hyperlipidemia model through the PPAR-signaling pathway and HMGCR expression. In brief, Ate can significantly regulate the blood lipid level of the model rats, which may be achieved by regulating the PPAR-signaling pathway and HMGCR gene expression.


Asunto(s)
Atorvastatina/farmacología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hiperlipidemias/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , PPAR gamma/metabolismo , Animales , Anticolesterolemiantes/efectos adversos , Anticolesterolemiantes/farmacología , Atorvastatina/efectos adversos , Atorvastatina/química , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
8.
World J Microbiol Biotechnol ; 37(11): 191, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34632522

RESUMEN

The resistance of Candida albicans to azole drugs represents a great global challenge. This study investigates the potential fungicidal effects of atorvastatin (ATO) combinations with fluconazole (FLU), itraconazole (ITR), ketoconazole (KET) and voriconazole (VOR) against thirty-four multidrug-resistant (MDR) C. albicans using checkerboard and time-kill methods. Results showed that 94.12% of these isolates were MDR to ≥ two azole drugs, whereas 5.88% of them were susceptible to azole drugs. The tested isolates exhibited high resistance rates to FLU (58.82%), ITR (52.94%), VOR (47.06%) and KET (35.29%), whereas only three representative (8.82%) isolates were resistant to all tested azoles. Remarkably, the inhibition zones of these isolates were increased at least twofold with the presence of ATO, which interacted in a synergistic (FIC index ≤ 0.5) manner with tested azoles. In silico docking study of ATO and the four azole drugs were performed against the Lanosterol 14-alpha demethylase enzyme (ERG11) of C. albicans. Results showed that the mechanism of action of ATO against C. albicans is similar to that of azole compounds, with a docking score (-4.901) lower than azole drugs (≥5.0) due to the formation a single H-bond with Asp 225 and a pi-pi interaction with Thr 229. Importantly, ATO combinations with ITR, VOR and KET achieved fungicidal effects (≥ 3 Log10 cfu/ml reduction) against the representative isolates, whereas a fungistatic effect (≤ 3 Log10 cfu/ml reduction) was observed with FLU combination. Thus, the combination of ATO with azole drugs could be promising options for treating C. albicans infection.


Asunto(s)
Atorvastatina/farmacología , Azoles/farmacología , Candida albicans/efectos de los fármacos , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Fungicidas Industriales/farmacología , Animales , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Atorvastatina/química , Atorvastatina/uso terapéutico , Azoles/química , Azoles/uso terapéutico , Candidiasis/tratamiento farmacológico , Fluconazol/farmacología , Fluconazol/uso terapéutico , Fungicidas Industriales/química , Fungicidas Industriales/uso terapéutico , Humanos , Itraconazol/farmacología , Itraconazol/uso terapéutico , Cetoconazol/farmacología , Cetoconazol/uso terapéutico , Cinética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Voriconazol/farmacología , Voriconazol/uso terapéutico
9.
Mol Med ; 27(1): 105, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503440

RESUMEN

BACKGROUND: Vaccination programs have been launched worldwide to halt the spread of COVID-19. However, the identification of existing, safe compounds with combined treatment and prophylactic properties would be beneficial to individuals who are waiting to be vaccinated, particularly in less economically developed countries, where vaccine availability may be initially limited. METHODS: We used a data-driven approach, combining results from the screening of a large transcriptomic database (L1000) and molecular docking analyses, with in vitro tests using a lung organoid model of SARS-CoV-2 entry, to identify drugs with putative multimodal properties against COVID-19. RESULTS: Out of thousands of FDA-approved drugs considered, we observed that atorvastatin was the most promising candidate, as its effects negatively correlated with the transcriptional changes associated with infection. Atorvastatin was further predicted to bind to SARS-CoV-2's main protease and RNA-dependent RNA polymerase, and was shown to inhibit viral entry in our lung organoid model. CONCLUSIONS: Small clinical studies reported that general statin use, and specifically, atorvastatin use, are associated with protective effects against COVID-19. Our study corroborrates these findings and supports the investigation of atorvastatin in larger clinical studies. Ultimately, our framework demonstrates one promising way to fast-track the identification of compounds for COVID-19, which could similarly be applied when tackling future pandemics.


Asunto(s)
Antivirales/farmacología , Atorvastatina/farmacología , Tratamiento Farmacológico de COVID-19 , Pulmón/efectos de los fármacos , Organoides/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Atorvastatina/química , COVID-19/prevención & control , Línea Celular , Proteasas 3C de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/química , Doxiciclina/farmacología , Aprobación de Drogas , Reposicionamiento de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Pulmón/virología , Modelos Biológicos , Simulación del Acoplamiento Molecular , Organoides/virología , Clorhidrato de Raloxifeno/química , Clorhidrato de Raloxifeno/farmacología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Trifluoperazina/química , Trifluoperazina/farmacología , Estados Unidos , United States Food and Drug Administration , Vesiculovirus/genética , Internalización del Virus/efectos de los fármacos
10.
Mol Pharm ; 18(9): 3378-3386, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34351158

RESUMEN

Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that are widely used to prevent cardiovascular diseases. However, a series of pleiotropic mechanisms have been associated with statins, particularly with atorvastatin. Therefore, the assessment of [18F]atorvastatin kinetics with positron emission tomography (PET) may elucidate the mechanism of action of statins and the impact of sexual dimorphism, which is one of the most debated interindividual variations influencing the therapeutic efficacy. [18F]Atorvastatin was synthesized via a previously optimized 18F-deoxyfluorination strategy, used for preclinical PET studies in female and male Wistar rats (n = 7 for both groups), and for subsequent ex vivo biodistribution assessment. PET data were fitted to several pharmacokinetic models, which allowed for estimating relevant kinetic parameters. Both PET imaging and biodistribution studies showed negligible uptake of [18F]atorvastatin in all tissues compared with the primary target organ (liver), excretory pathways (kidneys and small intestine), and stomach. Uptake of [18F]atorvastatin was 38 ± 3% higher in the female liver than in the male liver. The irreversible 2-tissue compartment model showed the best fit to describe [18F]atorvastatin kinetics in the liver. A strong correlation (R2 > 0.93) between quantitative Ki (the radiotracer's unidirectional net rate of influx between compartments) and semi-quantitative liver's SUV (standard uptake value), measured between 40 to 90 min, showed potential to use the latter parameter, which circumvents the need for blood sampling as a surrogate of Ki for monitoring [18F]atorvastatin uptake. Preclinical assays showed faster uptake and clearance for female rats compared to males, seemingly related to a higher efficiency for exchanges between the arterial input and the hepatic tissue. Due to the slow [18F]atorvastatin kinetics, equilibrium between the liver and plasma concentration was not reached during the time frame studied, making it difficult to obtain sufficient and accurate kinetic information to quantitatively characterize the radiotracer pharmacokinetics over time. Nevertheless, the reported results suggest that the SUV can potentially be used as a simplified measure, provided all scans are performed at the same time point. Preclinical PET-studies with [18F]atorvastatin showed faster uptake and clearance in female compared to male rats, apparently related to higher efficiency for exchange between arterial blood and hepatic tissue.


Asunto(s)
Atorvastatina/farmacocinética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/análisis , Animales , Atorvastatina/administración & dosificación , Atorvastatina/análisis , Atorvastatina/química , Femenino , Radioisótopos de Flúor/administración & dosificación , Radioisótopos de Flúor/análisis , Eliminación Hepatobiliar , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/análisis , Masculino , Imagen Molecular/métodos , Radiofármacos/administración & dosificación , Ratas , Ratas Wistar , Factores Sexuales , Distribución Tisular
11.
Int J Mol Sci ; 22(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073952

RESUMEN

Statins are the most effective cholesterol-lowering drugs. They also exert many pleiotropic effects, including anti-cancer and cardio- and neuro-protective. Numerous nano-sized drug delivery systems were developed to enhance the therapeutic potential of statins. Studies on possible interactions between statins and human proteins could provide a deeper insight into the pleiotropic and adverse effects of these drugs. Adenylate kinase (AK) was found to regulate HDL endocytosis, cellular metabolism, cardiovascular function and neurodegeneration. In this work, we investigated interactions between human adenylate kinase isoenzyme 1 (hAK1) and atorvastatin (AVS), fluvastatin (FVS), pravastatin (PVS), rosuvastatin (RVS) and simvastatin (SVS) with fluorescence spectroscopy. The tested statins quenched the intrinsic fluorescence of hAK1 by creating stable hAK1-statin complexes with the binding constants of the order of 104 M-1. The enzyme kinetic studies revealed that statins inhibited hAK1 with significantly different efficiencies, in a noncompetitive manner. Simvastatin inhibited hAK1 with the highest yield comparable to that reported for diadenosine pentaphosphate, the only known hAK1 inhibitor. The determined AK sensitivity to statins differed markedly between short and long type AKs, suggesting an essential role of the LID domain in the AK inhibition. Our studies might open new horizons for the development of new modulators of short type AKs.


Asunto(s)
Adenilato Quinasa/química , Geobacillus stearothermophilus/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Adenilato Quinasa/metabolismo , Secuencia de Aminoácidos , Atorvastatina/química , Dicroismo Circular , Fluvastatina/química , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/enzimología , Geobacillus stearothermophilus/genética , Humanos , Concentración 50 Inhibidora , Isoenzimas/química , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Pravastatina/química , Unión Proteica , Proteínas Recombinantes , Rosuvastatina Cálcica/química , Alineación de Secuencia , Simvastatina/química , Espectrometría de Fluorescencia , Espectrofotometría , Electricidad Estática , Temperatura
12.
AAPS PharmSciTech ; 22(5): 161, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031791

RESUMEN

Atorvastatin (ATV) is a poorly water-soluble drug that exhibits poor oral bioavailability. Therefore, present research was designed to develop ATV solid dispersions (SDs) to enhance the solubility, drug release, and oral bioavailability. Various SDs of ATV were formulated by conventional and microwave-induced melting methods using Gelucire®48/16 as a carrier. The formulated SDs were characterized for different physicochemical characterizations, drug release, and oral bioavailability studies. The results obtained from the different physicochemical characterization indicate the molecular dispersion of ATV within various SDs. The drug polymer interaction results showed no interaction between ATV and used carrier. There was marked enhancement in the solubility (1.95-9.32 folds) was observed for ATV in prepared SDs as compare to pure ATV. The drug content was found to be in the range of 96.19% ± 2.14% to 98.34% ± 1.32%. The drug release results revealed significant enhancement in ATV release from prepared SDs compared to the pure drug and the marketed tablets. The formulation F8 showed high dissolution performance (% DE30 value of 80.65 ± 3.05) among the other formulations. Optimized Gelucire®48/16-based SDs formulation suggested improved oral absorption of atorvastatin as evidenced with improved pharmacokinetic parameters (Cmax 2864.33 ± 573.86 ng/ml; AUC0-t 5594.95 ± 623.3 ng/h ml) as compared to ATV suspension (Cmax 317.82 ± 63.56 ng/ml; AUC0-t 573.94 ± 398.9 ng/h ml) and marketed tablets (Cmax 852.72 ± 42.63 ng/ml; 4837.4 ± 174.7 ng/h ml). Conclusively, solid dispersion-based oral formulation of atorvastatin could be a promising approach for enhanced drug solubilization, dissolution, and subsequently improved absorption.


Asunto(s)
Atorvastatina/farmacocinética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Administración Oral , Animales , Atorvastatina/sangre , Atorvastatina/química , Disponibilidad Biológica , Portadores de Fármacos/química , Liberación de Fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/sangre , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Técnicas In Vitro , Ratas , Solubilidad , Comprimidos
13.
J Chromatogr Sci ; 59(4): 371-380, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33434916

RESUMEN

Herbals that are widely consumed as therapeutic alternatives to conventional drugs for cardiovascular diseases, may lead to herb-drug interactions (HDIs). Atorvastatin (ATR) is drug of choice for hyperlipidemia and is extensively metabolized through CYP3A4 enzyme. Thus, we postulate that concomitant administration of ATR with piperine (PIP, potent inhibitor of CYP3A4 enzyme)/ridayarishta (RID, cardiotonic herbal formulations containing PIP) may lead to potential HDI. A simple, accurate, sensitive high-performance liquid chromatography-photodiode array detection method using Kromasil-100 C18 column, mobile phase acetonitrile: 30 mM phosphate buffer (55:45 v/v) pH 4.5 with flow rate gradient programming was developed to study the potential HDI in rats. Method was found to be linear (2-100 ng/mL) with Lower Limit of Detection (LLOD) 2 ng/mL. The precision (%CV < 15%), accuracy (-1.0 to -10% R.E) with recoveries above 90% from rat plasma of ATR and IS were obtained. The pharmacokinetic (PK) interactions studies on co-administration of ATR (8.4 mg/kg, p.o.) with PIP (35 mg/kg, p.o.), demonstrated a threefold increase in Cmax of ATR (P < 0.01) with significant increase in AUC0-t/AUC0-∞ compared to ATR alone indicating potential PK-HDI. However co-administration of RID (4.2 mL/kg, p.o.) showed less significant changes (P > 0.05) indicating low HDI. The pharmacodynamic effects/interactions study (TritonX-100 induced hyperlipidemic model in rats) suggested no significant alterations in the lipid profile on co-administration of PIP/RID with ATR, indicating that there may be no significant pharmacodynamic interactions.


Asunto(s)
Alcaloides , Atorvastatina , Benzodioxoles , Cromatografía Líquida de Alta Presión/métodos , Piperidinas , Alcamidas Poliinsaturadas , Alcaloides/sangre , Alcaloides/química , Alcaloides/farmacocinética , Animales , Atorvastatina/sangre , Atorvastatina/química , Atorvastatina/farmacocinética , Benzodioxoles/sangre , Benzodioxoles/química , Benzodioxoles/farmacocinética , Interacciones de Hierba-Droga , Límite de Detección , Modelos Lineales , Piperidinas/sangre , Piperidinas/química , Piperidinas/farmacocinética , Extractos Vegetales/sangre , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Alcamidas Poliinsaturadas/sangre , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/farmacocinética , Ratas , Ratas Wistar , Reproducibilidad de los Resultados
14.
AAPS PharmSciTech ; 22(2): 59, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33517486

RESUMEN

Development of fixed dose combinations is growing and many of these drug combinations are being legally marketed. However, the development of these requires careful investigation of possible physicochemical changes during co-processing. This requires investigation of the effect of co-processing of drug combination in absence of excipients to maximize the chance of interaction (if any). Accordingly, the aim was to investigate the effect of co-processing of ezetimibe and atorvastatin on drugs dissolution rate. The objective was extended to in vitro in vivo correlation. Drugs were subjected to wet co-processing in presence of ethanol after being mixed at different ratios. The prepared formulations were characterized using FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and in vitro dissolution testing. These investigations proved the possibility of eutectic system formation after drugs co-processing. This was reflected on drugs dissolution rate which was significantly enhanced at dose ratio and 2:1 atorvastatin:ezetimibe molar ratio compared to the corresponding pure drugs. In vivo antihyperlipidemic effects of the co-processed drugs were monitored in albino mice which were subjected to hyperlipidemia induction using poloxamer 407. The results showed significant enhancement in pharmacological activity as revealed from pronounced reduction in cholesterol level in mice administering the co-processed form of both drugs. Besides, histopathological examinations of the liver showed marked decrease in hepatic vacuolation. In conclusion, co-processing of atorvastatin with ezetimibe resulted in beneficial eutexia which hastened the dissolution rate and pharmacological effects of both drugs.Graphical abstract.


Asunto(s)
Anticolesterolemiantes/administración & dosificación , Atorvastatina/administración & dosificación , Ezetimiba/administración & dosificación , Animales , Anticolesterolemiantes/farmacología , Atorvastatina/química , Atorvastatina/farmacología , Combinación de Medicamentos , Liberación de Fármacos , Ezetimiba/química , Ezetimiba/farmacología , Masculino , Ratones
15.
J Biomater Appl ; 35(8): 958-977, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33148109

RESUMEN

In this study, gelatin/hyaluronic acid (HA) scaffolds containing different amounts of atorvastatin-loaded nanostructured lipid carriers (NLCs) coated entirely with polycaprolactone (PCL) film were fabricated for skin regeneration. 12 atorvastatin-loaded NLCs formulations were synthesized, and particle size, zeta potential, drug entrapment efficiency (EE), and drug release of the formulations were determined. The optimum freeze-dried atorvastatin-loaded NLCs were added in 3 different weight percentages to the gelatin and HA membranous scaffolds. Thereafter, the membranes were coated entirely by a thin layer of the PCL. They were characterized, and then mechanical properties, in vitro degradation and in vitro drug release were assessed. Moreover, human dermal fibroblasts (HDF) were cultured on the prepared nanocomposite scaffolds in order to investigate the cytotoxicity by the MTT assay after the first day, third day, and fifth day. Results revealed that the most favorable atorvastatin-loaded NLCs had 99.54 nm average particle size, -24.30 mV zeta potential, 97.98% EE, and 75.24% drug release within 237 hrs. Mechanical tests indicated that all the three scaffolds had approximately a 90 MPa elastic modulus which was more than two-fold of tensile modulus of normal human skin. The in vitro degradation test demonstrated that the membranes were degraded up to 98% after 5 days, and the scaffolds drug release efficiency (DRE) was in a range of 75-79% during those 5 days. The MTT assay results confirmed the cytocompatibility of the scaffolds. The scaffold containing 54.1 wt% NCLs was the optimum sample (S3). Scanning Electron Microscopy (SEM) images of the latter one showed the uniform distribution of the NLCs with an average size of 150 nm, and the images of cultured HDF illustrated the good cell attachment. In conclusion, suitable physicochemical and biological properties of the novel gelatin/HA/PCL nanocomposite scaffold containing 54.1 wt% atorvastatin-loaded NLCs (S3) can be a good candidate for skin regeneration.


Asunto(s)
Atorvastatina/química , Portadores de Fármacos/química , Gelatina/química , Ácido Hialurónico/química , Lípidos/química , Poliésteres/química , Ingeniería de Tejidos , Atorvastatina/farmacología , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Módulo de Elasticidad , Humanos , Nanocompuestos/química , Tamaño de la Partícula , Regeneración/efectos de los fármacos , Piel , Resistencia a la Tracción , Andamios del Tejido/química
16.
Int J Biol Macromol ; 167: 1414-1423, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33202264

RESUMEN

In this study, the effect of long-term use drugs of cholesterol-lowering atorvastatin and simvastatin on the activity and molecular structure of pepsin as important gastric enzyme was investigated by various experimental and computational methods. Based on the results obtained from fluorescence experiments, both drugs can bond to pepsin and quench the fluorescence intensity of protein through the static quenching mechanism. Also analysis of the thermodynamic parameters of binding the drugs to pepsin showed that the main forces in the complex formation for both are hydrophobic interactions and van der Waals forces. The effects of the drugs on the enzymatic activity of pepsin were then investigated and results showed that in the presence of both drugs the catalytic activity of the enzyme was significantly increased in lower (0.3-0.6 mM) concentrations however about the atorvastatin, increasing the concentration (0.9 mM) decreased the protease activity of pepsin. Also as a result of the FTIR studies, it was found that binding of the drugs to protein did not significant alteration in the structure of the protein. In order to obtain the atomic details of drug-protein interactions, the computational calculations were performed. The results in good agreement with those obtained from the experimental for interaction; confirm that the drugs both are bind to a cleft near the active site of the protein without any change in the structure of pepsin. Overall from the results obtained in this study, it can be concluded that both simvastatin and atorvastatin can strongly bond to a location close to the active site of pepsin and the binding change the enzymatic activity of protein.


Asunto(s)
Anticolesterolemiantes/química , Atorvastatina/química , Pepsina A/química , Simvastatina/química , Sitios de Unión , Catálisis , Dominio Catalítico , Fluorescencia , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Preparaciones Farmacéuticas/química , Unión Proteica , Proteolisis , Espectrometría de Fluorescencia , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
17.
AAPS PharmSciTech ; 21(7): 263, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978691

RESUMEN

In the current research, the main focus was to overcome dermal delivery problems of atorvastatin. To this end, atorvastatin solid lipid nanoparticles (ATR-SLNs) were prepared by ultra-sonication technique. The prepared SLNs had a PDI value of ≤ 0.5, and the particle size of nanoparticles was in the range 71.07 ± 1.72 to 202.07 ± 8.40 nm. It was noticed that, when the concentration of lipid in ATR-SLNs increased, the size of nanoparticles and drug entrapment efficiency were also increased. Results showed that a reduction in the HLB of surfactants used in the preparation of SLN caused an increase in the particle size, zeta potential (better stability), and drug entrapment efficiency. Despite Tween and Span are non-ionic surfactants, SLNs containing these surfactants showed a negative zeta potential, and the absolute zeta potential increased when the concentration of Span 80 was at maximum. DSC thermograms, FTIR spectra, and x-ray diffraction (PXRD) pattern showed good incorporation of ATR in the nanoparticles without any chemical interaction. In vitro skin permeation results showed that SLN containing atorvastatin was capable of enhancing the dermal delivery of atorvastatin where a higher concentration of atorvastatin can be detected in skin layers. This is a hopeful promise which could be developed for clinical studies of the dermal delivery of atorvastatin nanoparticles as an anti-inflammatory agent.


Asunto(s)
Antiinflamatorios/administración & dosificación , Atorvastatina/administración & dosificación , Portadores de Fármacos/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Lípidos/química , Nanopartículas/química , Animales , Antiinflamatorios/química , Atorvastatina/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Tamaño de la Partícula , Polisorbatos , Piel/metabolismo , Absorción Cutánea , Tensoactivos/metabolismo , Difracción de Rayos X
18.
ACS Appl Mater Interfaces ; 12(37): 41113-41126, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32833422

RESUMEN

In recent years, valvular heart disease has become a serious disease threatening human life and is a major cause of death worldwide. However, the glutaraldehyde (GLU)-treated biological heart valves (BHVs) fail to meet all requirements of clinical application due to disadvantages such as valve thrombus, cytotoxicity, endothelialization difficulty, immune response, and calcification. Encouragingly, there are a large number of carboxyls as well as a few amino groups on the surface of GLU-treated BHVs that can be modified to enhance biocompatibility. Inspired by natural biological systems, we report a novel approach in which the heart valve was cross-linked with erythrocyte membrane biomimetic drug-loaded nanoparticles. Such modified heart valves not only preserved the structural integrity, stability, and mechanical properties of the GLU-treated BHVs but also greatly improved anti-coagulation, anti-inflammation, anti-calcification, and endothelialization. The in vitro results demonstrated that the modified heart valves had long-term anti-coagulation properties and enhanced endothelialization processes. The modified heart valves also showed good biocompatibility, including blood and cell biocompatibility. Most importantly, the modified heart valves reduced the TNF-α levels and increased IL-10 compared to GLU-treated BHVs. In vivo animal experiments also confirmed that the modified heart valves had an ultrastrong resistance to calcification after implantation in rats for 120 days. The mechanism of anti-calcification in vivo was mainly due to the controlled release of anti-inflammatory drugs that reduced the inflammatory response after valve implantation. In summary, this therapeutic approach based on BHVs cross-linking with erythrocyte membrane biomimetic nanoparticles sparks a novel design for valvular heart disease therapy.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Reactivos de Enlaces Cruzados/farmacología , Membrana Eritrocítica/química , Válvulas Cardíacas/efectos de los fármacos , Nanopartículas/química , Animales , Antiinflamatorios no Esteroideos/química , Atorvastatina/química , Atorvastatina/farmacología , Reactivos de Enlaces Cruzados/química , Células Endoteliales/efectos de los fármacos , Humanos , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ratas , Ratas Sprague-Dawley , Sirolimus/química , Sirolimus/farmacología , Propiedades de Superficie
19.
Drug Des Devel Ther ; 14: 3057-3068, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801644

RESUMEN

PURPOSE: Colorectal cancer (CRC) is the third most frequently diagnosed cancer and the fourth leading cause of cancer death over the world. Nano-sized drug delivery systems are used for the treatment of cancers. The aim of this study was to develop a tangeretin (TAGE) and atorvastatin (ATST) combined nano-system decorated with RGD (RGD-ATST/TAGE CNPs) for colon cancer combination therapy. MATERIALS AND METHODS: In this study, cyclized arginine-glycine-aspartic acid sequences (RGD) contained ligand was synthesized by conjugating cyclo (Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) with D-α-tocopheryl succinate dichloromethane (TOSD) using polyethylene glycol (PEG) as a linker to obtain cRGDfK-PEG-TOSD. ATST and TAGE combined nano-systems: RGD-ATST/TAGE CNPs were prepared. The combination effects as well as antitumor effects of these two agents were evaluated on colon cancer cells and mice bearing cancer models. RESULTS: Drug entrapment efficiencies of nano-systems were high (around 90%), suggesting the good loading capacity. The release profiles of ATST or TAGE from RGD-ATST/TAGE CNPs followed Higuchi model. The RGD-decorated nano-system showed more obvious cytotoxicity on HT-29 cells than the undecorated nano-system, but no obvious difference was found on normal CCD-18 cells. The strongest synergism was observed when the weight ratio of ATST to TAGE was 1:1. In vivo biodistribution of RGD-ATST/TAGE CNPs in the tumor site is high and prominently inhibited the in vivo tumor growth. CONCLUSION: The results demonstrated that RGD-ATST/TAGE CNPs showed the most significant synergistic therapeutic efficacy, exhibited no significant toxicity to major organs and tissues, and body weight of the treated mice was stable. Therefore, the combination nano-system is a promising platform for colon cancer therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Atorvastatina/farmacología , Neoplasias del Colon/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Flavonas/farmacología , Nanopartículas/química , Oligopéptidos/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/química , Atorvastatina/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/patología , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Flavonas/química , Humanos , Cinética , Ligandos , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Oligopéptidos/síntesis química , Tamaño de la Partícula
20.
Eur J Pharm Biopharm ; 153: 1-13, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32504798

RESUMEN

Despite the new treatment strategies within the last 30 years, peripheral nerve injury (PNI) is still a worldwide clinical problem. The incidence rate of PNIs is 1 in 1000 individuals per year. In this study, we designed a composite nanoplatform for dual therapy in peripheral nerve injury and investigated the in-vivo efficacy in rat sciatic nerve crush injury model. Alpha-lipoic acid (ALA) was loaded into poly lactic-co-glycolic acid (PLGA) electrospun nanofibers which would release the drug in a faster manner and atorvastatin (ATR) loaded chitosan (CH) nanoparticles were embedded into PLGA nanofibers to provide sustained release. Sciatic nerve crush was generated via Yasargil aneurism clip with a holding force of 50 g/cm2. Nanofiber formulations were administered to the injured nerve immediately after trauma. Functional recovery of operated rat hind limb was evaluated using the sciatic functional index (SFI), extensor postural thrust (EPT), withdrawal reflex latency (WRL) and Basso, Beattie, and Bresnahan (BBB) test up to one month in the post-operative period at different time intervals. In addition to functional recovery assessments, ultrastructural and biochemical analyses were carried out on regenerated nerve fibers. L-929 mouse fibroblast cell line and B35 neuroblastoma cell line were used to investigate the cytotoxicity of nanofibers before in-vivo experiments. The neuroprotection potential of these novel nanocomposite fiber formulations has been demonstrated after local implantation of composite nanofiber sheets incorporating ALA and ATR, which contributed to the recovery of the motor and sensory function and nerve regeneration in a rat sciatic nerve crush injury model.


Asunto(s)
Atorvastatina/química , Atorvastatina/farmacología , Nanofibras/química , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Ácido Tióctico/química , Animales , Ratones , Regeneración Nerviosa/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Polietilenglicoles/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...